NEURAL NETWORK MODEL BASED ON FUZZY ARTMAP FOR FORECASTING OF HIGHWAY TRAFFIC DATA

D. Boto-Giralda, M. Antón-Rodríguez, F. J. Díaz -Pernas, J. F. Díez Higuera

2006

Abstract

In this article, a neural network model is presented for forecasting the average speed values at highway traffic detectors locations using the Fuzzy ARTMAP theory. The performance of the model is measured by the deviation between the speed values provided by the loop detectors and the predicted speed values. Different Fuzzy ARTMAP configuration cases are analysed in their training and testing phases. Some ad-hoc mechanisms added to the basic Fuzzy ARTMAP structure are also described to improve the entire model performance. The achieved results make this model suitable for being implemented on advanced traffic management systems (ATMS) and advanced traveller information system (ATIS).

References

  1. Adeli, H., 2002. “Automatic detection of traffic incidents using data obtained from sensors embedded in intelligent freeways ”. Sensor Review; Volume: 22 Issue: 2; 2002 Research paper.
  2. Adeli, H., Hung, S.L., 1995. “Machine Learning-Neural Networks, Genetic Algorithms, and Fuzzy Systems”. Wiley, New York.
  3. Adeli, H., Hung, S.L., 1994. “An adaptive conjugate gradient learning algorithm for efficient training of neural networks”. Applied Mathematics and Computatio n 62 (1), 81-100.
  4. Carpenter, G.A., 2003. “Default ARTMAP”. Neural Networks, 2003. Proceedings of the International Joint Conference on Volume 2, 20-24 July 2003 Page(s):1396 - 1401 vol.2.
  5. Carpenter, G.A., et al., 1992.”Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps”. Neural Networks, IEEE Transactions on Volume 3, Issue 5, Sept. 1992 Page(s):698 - 713.
  6. Dharia, A. and Adeli, H., 2003. “Neural network model for rapid forecasting of freeway link travel time”. Engineering Applications of Artificial Intelligence, Volume 16, Issues 7-8, October-December 2003, Pages 607-613.
  7. Jiang, G., et al., 2003. “The study on the application of fuzzy clustering analysis in the dynamic identification of road traffic state”. Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE. Volume 1, 2003 Page(s):408 - 411 vol.1.
  8. Park, D., Rilett, L.R., 1999. “Forecasting freeway link travel times with a multilayer feedforward neural network”. Computer-Aided Civil and Infrastructure Engineering 14 (5), 357-367.
  9. Wang, X-H, Xiao, J.M.,2003.”A radial basis function neural network approach to traffic flow forecasting”. Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE. Volume 1, 2003 Page(s):614 - 617 vol.1.
Download


Paper Citation


in Harvard Style

Boto-Giralda D., Antón-Rodríguez M., J. Díaz -Pernas F. and F. Díez Higuera J. (2006). NEURAL NETWORK MODEL BASED ON FUZZY ARTMAP FOR FORECASTING OF HIGHWAY TRAFFIC DATA . In Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-972-8865-59-7, pages 19-25. DOI: 10.5220/0001213000190025


in Bibtex Style

@conference{icinco06,
author={D. Boto-Giralda and M. Antón-Rodríguez and F. J. Díaz -Pernas and J. F. Díez Higuera},
title={NEURAL NETWORK MODEL BASED ON FUZZY ARTMAP FOR FORECASTING OF HIGHWAY TRAFFIC DATA},
booktitle={Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2006},
pages={19-25},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001213000190025},
isbn={978-972-8865-59-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - NEURAL NETWORK MODEL BASED ON FUZZY ARTMAP FOR FORECASTING OF HIGHWAY TRAFFIC DATA
SN - 978-972-8865-59-7
AU - Boto-Giralda D.
AU - Antón-Rodríguez M.
AU - J. Díaz -Pernas F.
AU - F. Díez Higuera J.
PY - 2006
SP - 19
EP - 25
DO - 10.5220/0001213000190025