EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION

Andreas Stergiou, Aristodemos Pnevmatikakis, Lazaros Polymenakos

2006

Abstract

Autonomic human-machine interfaces need to determine the user of the machine in a non-obtrusive way. The identification of the user can be done in many ways, using RF ID tags, the audio stream or the video stream to name a few. In this paper we focus on the identification of faces from the video stream. In particular, we compare two different approaches, linear subspace projection from the appearance-based methods, and Elastic Bunch Graph Matching from the feature-based. Since the intended application is restricted to indoor multi-camera setups with collaborative users, the deployment scenarios of the recognizer are easily identified. The comparison of the methods is done using a common test-bed for both methods. The test-bed is exhaustive for the deployment scenarios we need to consider, leading to the identification of deployment scenarios for which each method is preferable.

References

  1. Belhumeur, P., Hespanha, J., and Kriegman, D. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7):711-720.
  2. Beveridge, J. and She, K. (2001). Fall 2001 update to CSU PCA versus PCA+LDA comparison. Technical report, Colorado State University, Fort Collins, CO.
  3. Bolme, D. S. (2003). Elastic Bunch Graph Matching. Master's thesis, Computer Science Department, Colorado State University.
  4. Brunelli, R. and Poggio, T. (1993). Face recognition: Features versus templates. IEEE Trans. Pattern Analysis and Machine Intelligence, 15:1042-1052.
  5. Christmas, B. and Galambos, C. (2005). //www.ee.surrey.ac.uk/Research/ VSSP/RavlDoc/share/doc/RAVL/Auto/ Basic/Tree/Ravl.html.
  6. Duda, R., Hart, P., and Stork, D. (2000). Pattern Classification. Wiley-Interscience, New York.
  7. Georghiades, A., Belhumeur, P., and Kriegman, D. (2001). From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):643-660.
  8. Gunning, J. and Murphy, N. (1992). Neural network based classification using automatically selected feature sets. IEE Conf. Series 359, pages 29-33.
  9. Jesorsky, O., Kirchberg, K., and Frischholz, R. (2001). Robust face detection using the Hausdorff distance. In Audio and Video based Person Authentication - AVBPA 2001, pages 90-95. Springer.
  10. Martinez, A. and Kak, A. (2001). PCA versus LDA. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(2):228-233.
  11. Pentland, A., Moghaddam, B., and Starner, T. (1994). View-based and modular eigenspaces for face recognition. Proc. IEEE Conf. on Comp. Vision & Pattern Rec., pages 84-91.
  12. Pnevmatikakis, A. and Polymenakos, L. (2004). Comparison of eigenface-based feature vectors under different impairments. Int. Conf. Pattern Recognition 2004, 1:296-300.
  13. Pnevmatikakis, A. and Polymenakos, L. (2005). A testing methodology for face recognition algorithms. In 2nd Joint Workshop on Multi-Modal Interaction and Related Machine Learning Algorithms, Edinburgh.
  14. Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. J. Cognitive Neuroscience, 3:71-86.
  15. Waibel, A., Steusloff, H., and Stiefelhagen, R. (2004). CHIL - Computers in the Human Interaction Loop. In 5th International Workshop on Image Analysis for Multimedia Interactive Services - WIAMIS 2004.
  16. Wiskott, L., Fellous, J.-M., Krueger, N., and von der Malsburg, C. (1999). Face recognition by Elastic Bunch Graph Matching. In Intelligent Biometric Techniques in Fingerprint and Face Recognition, chapter 11, pages 355-396. CRC Press.
  17. Yang, M., Kriegman, D., and Ahuja, N. (2002). Detecting faces in images: A survey. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(1):34-58.
  18. Zhao, W., Chellappa, R., Rosenfeld, A., and Phillips, P. (2000). Face recognition: A literature survey.
Download


Paper Citation


in Harvard Style

Stergiou A., Pnevmatikakis A. and Polymenakos L. (2006). EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, ISBN 972-8865-40-6, pages 131-137. DOI: 10.5220/0001359401310137


in Bibtex Style

@conference{visapp06,
author={Andreas Stergiou and Aristodemos Pnevmatikakis and Lazaros Polymenakos},
title={EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,},
year={2006},
pages={131-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001359401310137},
isbn={972-8865-40-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP,
TI - EBGM VS SUBSPACE PROJECTION FOR FACE RECOGNITION
SN - 972-8865-40-6
AU - Stergiou A.
AU - Pnevmatikakis A.
AU - Polymenakos L.
PY - 2006
SP - 131
EP - 137
DO - 10.5220/0001359401310137