FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES
H. Abrishami Moghaddam, M. Ghayoumi
2006
Abstract
In this paper, we present an approach that unifies sub-space feature extraction and support vector classification for face recognition. Linear discriminant, independent component and principal component analyses are used for dimensionality reduction prior to introducing feature vectors to a support vector machine. The performance of the developed methods in reducing classification error and providing better generalization for high dimensional face recognition application is demonstrated.
References
- Sun, Z., Bebis, G., Miller, R., 2004. Object detection using feature subset selection. Pattern Recognition, Elsevier Vol. 37, No. 11, pp. 2165-2176.
- Jain, A., Duin, R., Mao, J., 2001. Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Machine Intell , Vol. 22, No. 1, pp. 4-37.
- Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J., 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell , Vol. 19, pp. 711-720.
- Moghaddam, B., 2002. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Trans. Pattern Anal. Machine Intell, Vol. 24, No. 6, pp. 780-788.
- Othman, H., Aboulnasr, T., 2003. A separable low complexity 2D HMM with application to face recognition. IEEE Trans. Pattern Anal. Machine Intell, Vol. 25, No. 10, pp. 1229-1238.
- Er, M. J., Wu, S., Lu, J., Toh, H.L., 2002. Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Networks, Vol. 13, No. 3, pp. 697 - 710.
- Lee, K., Chung, Y., Byun, H., 2002. SVM-based face verification with feature set of small size. Electronics Letters, Vol. 38, No. 15, pp. 787-789.
- Turk, M., Pentland, A., 1991. Eigenfaces for recognition. J. Cognitive Neurosci.
- Liu, C., Wechsler, H., 2003. Independent component analysis of Gabor features for face recognition. IEEE Trans. Neural Networks, Vol. 14, No. 4, pp. 919-928.
- Yu, H., Yang, J., 2001. A direct LDA algorithm for high dimensional data?with application to face recognition. Pattern Recognition, Vol. 34, No. 10, pp. 2067-2070.
- Heisele, B., Ho, P., Poggio, T., 2001. Face recognition with support vector machines: global versus component-based approach. Proceedings of the 8th IEEE International Conference on Computer Vision ,Vol. 2, pp. 688 - 694.
- Vapnik, V., 1995. The nature of statistical learning theory. ,Springer, Berlin.
- Wang, Y., Chua, C. S., Ho, Y. K., 2002. Facial feature detection and face recognition from 2D and 3D images. Pattern Recognition Letters, Vol. 23, No. 10, pp. 1191-1202.
- Qi, Y., Doermann, D., DeMenthon, D.,2001. Hybrid independent component analysis and support vector machine learning scheme for face detection. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3327-3338.
- Fortuna, J., Capson, D., 2004. Improved support vector classification using PCA and ICA feature space modification. Pattern Recognition, Vol. 37, No. 6, pp. 1117-1129.
- Bartlett, M., Sejnowski, T.,1997. Independent components of face images: a representation for face recognition. Proceedings of the Fourth Annual Joint Symposium on Neural Computation.
- Shi, Z., Tang, H., Tang, Y., 2004. A new fixed-point algorithm for independent component analysis. Neurocomputing , Vol. 56, pp. 467- 473.
- Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines. Cambridge University Press.
- Georghiades, S., Belhumeur, N., Kriegman, D. J., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trns, Pattern Anal, Machine Intell, pp. 643-660.
- Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition, Academic Press,New York . 2nd edition.
Paper Citation
in Harvard Style
Abrishami Moghaddam H. and Ghayoumi M. (2006). FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES . In Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, ISBN 972-8865-40-6, pages 480-485. DOI: 10.5220/0001363604800485
in Bibtex Style
@conference{visapp06,
author={H. Abrishami Moghaddam and M. Ghayoumi},
title={FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES},
booktitle={Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,},
year={2006},
pages={480-485},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001363604800485},
isbn={972-8865-40-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the First International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP,
TI - FACIAL IMAGE FEATURE EXTRACTION USING SUPPORT VECTOR MACHINES
SN - 972-8865-40-6
AU - Abrishami Moghaddam H.
AU - Ghayoumi M.
PY - 2006
SP - 480
EP - 485
DO - 10.5220/0001363604800485