Image Retrieval using Multiscalar Texture Co-occurrence Matrix

S. K. Saha, A. K. Das, Bhabatosh Chanda

2006

Abstract

We have designed and implemented a texture based image retrieval system that uses multiscalar texture co-occurrence matrix. The pixel array corresponding to an image is divided into a number of blocks of size 2 × 2 and a scheme is proposed to compute texture value for each of these blocks and then the texture co-occurrence matrix is formed. Image texture features are determined based on this matrix. Finally, a multiscalar version of the method is presented to cope with the texture pattern of various scale. Experiment using Brodatz texture database shows that retrieval performance of the proposed features is better than that of gray-level co-occurrence matrix and wavelet based features.

References

  1. Manjunath, B. S., Ma, W. Y.: Texture features for browsing and retrieval of image data. IEEE Trans. on PAMI Vol. 18 (1996) 837-842
  2. Tamura, H., Mori, S., Yamawaki, T.: Texture features corresponding to visual perceptoin. IEEE Trans. on SMC Vol. 8(6) (1978) 460-473
  3. Haralick, R. M.,Shanmugam, K., Dinstein, I.: features for image classification. Trans. on SMC Vol. 3(11) (1973) 610-622
  4. Gotlieb, C. C., Kreyszig H. E.: Texture descriptor based on co-occurrence matrices. Computer Vision, Graphics and Image Processing Vol. 51 (1990) 70-86
  5. Smith, J. R., Chang, S. F.: Transform features for texture classification and discrimination in large image databases. In: Proc. of IEEE Intl. Conf. on Image Processing Vol. 3 (1994) 407-411
  6. Smith, J. R., Chang, S. F.: Automated image retrieval using color and texture. Technical Report CU/CTR 408-95-14, Columbia University (1995)
  7. Smith, J. R., Chang, S. F.: Automated binary texture feature sets for image retrieval. In: Proc. of IEEE Intl. Conf. on ASSP, USA (1996) 2239-2242
  8. Ma, W. Y., Manjunath, B. S.: A comparison of wavelet transform features for texture image annotation. In: Proc. of IEEE Intl. Conf. on Image Processing (1995) 256-259
  9. Ko, B., Peng, J., Byun, H.: Region-based image retrieval using probabilistic feature relevance learning. Pattern Analysis and Applications Vol. 4 (2001) 174-184
  10. Berman, A. P.,Shapiro, L. G.: A Flexible Image Database System for Content-Based Retrieval. Computer Vision and Image Understanding Vol. 75 (1999) 175-195
  11. Fournier, J., Cord, M., Philipp-Foliguet, S.: Retin: A content-based image indexing and retrieval system. Pattern Analysis and Applications Vol. 4 (2001) 153-173
  12. Kaplan, L. M.: Fast texture database retrieval using extended fractal features. SPIE Vol. 3312 (1998) 162-173
  13. Liu, F., Picard, R. W.: Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Trans. on PAMI Vol. 18(7) (1996) 722-733
  14. Kelly, P. M., Cannon, T. M., Hush, D. R.: Query by Image Example: the CANDID approach. SPIE Vol. 2420 (1995) 238-248
  15. Pentland, A., Picard, R.: Introduction to Special Section on the Digital Libraries: Representation and Retrieval. IEEE Trans. on PAMI Vol. 18 (1996) 769-770
  16. Aggarwal, G., Dubey, P., Ghosal, S., Kulshreshtha, A., Sarkar, A.: ipure: Perceptual and user-friendly retrieval of images. In: Proc. of IEEE Conf. on Multimedia and Exposition, Vol. 2, New york, USA (2000) 693-696
  17. Sciascio, E. D., Mingolla, G., Mongiello, M.: Content-based image retrieval over the web using query by sketch and relevance feedback. In: Proc. of the Third International Conf. VISUAL 7899, Amsterdam (1999) 123-130
  18. Brunelli, R., Mich, O.: Image retrieval by examples. IEEE Trans. on Multimedia Vol. 2(3) (2000) 164-171
  19. Laaksonen, J., Koskela, M., Laakso, S., Oja, E.: Picsom - content-based image retrieval with self-organizing maps. Pattern Recognition Letters Vol. 21 (2000) 1199-1207
  20. Ciocca, G., Gagliardi, I., Schettini, R.: Quicklook2: An Integrated Multimedia System. International Journal of Visual Languages and Computing Vol. 12 (2001) 81-103
  21. Delp, E. J., Mitchell, O. R.: Image compression using block truncation coding. IEEE Trans. on Comm. Vol. 27 (1979) 1335-1342
  22. Vetterli, M., Kovacevic, J.: Wavelets and Subband Coding. Prentice Hall, Englewood Cliffs, New Jersey, (1995)
Download


Paper Citation


in Harvard Style

K. Saha S., K. Das A. and Chanda B. (2006). Image Retrieval using Multiscalar Texture Co-occurrence Matrix . In 6th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2006) ISBN 978-972-8865-55-9, pages 136-145. DOI: 10.5220/0002477401360145


in Bibtex Style

@conference{pris06,
author={S. K. Saha and A. K. Das and Bhabatosh Chanda},
title={Image Retrieval using Multiscalar Texture Co-occurrence Matrix},
booktitle={6th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2006)},
year={2006},
pages={136-145},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002477401360145},
isbn={978-972-8865-55-9},
}


in EndNote Style

TY - CONF
JO - 6th International Workshop on Pattern Recognition in Information Systems - Volume 1: PRIS, (ICEIS 2006)
TI - Image Retrieval using Multiscalar Texture Co-occurrence Matrix
SN - 978-972-8865-55-9
AU - K. Saha S.
AU - K. Das A.
AU - Chanda B.
PY - 2006
SP - 136
EP - 145
DO - 10.5220/0002477401360145